Complex Monge–Ampère equations and totally real submanifolds
نویسندگان
چکیده
We study the Dirichlet problem for complex Monge–Ampère equations in Hermitian manifolds with general (non-pseudoconvex) boundary. Our main result (Theorem 1.1) extends the classical theorem of Caffarelli, Kohn, Nirenberg and Spruck in Cn. We also consider the equation on compact manifolds without boundary, attempting to generalize Yau’s theorems in the Kähler case. As applications of the main result we study some connections between the homogeneous complex Monge–Ampère (HCMA) equation and totally real submanifolds, and a special Dirichlet problem for the HCMA equation related to Donaldson’s conjecture on geodesics in the space of Kähler metrics. © 2010 Elsevier Inc. All rights reserved. MSC: 58J05; 58J32; 32W20; 35J25; 53C55
منابع مشابه
Calibrations Associated to Monge-ampère Equations
We show the volume maximizing property of the special Lagrangian submanifolds of a pseudo-Euclidean space. These special Lagrangian submanifolds arise locally as gradient graphs of solutions to MongeAmpère equations.
متن کاملDirichlet Problems of Monge-ampère Equations
This note presents a detailed and self-contained discussion of the Dirichlet problem of real Monge-Ampère equations in strictly convex domains and complex Monge-Ampère equations in strongly pseudo-convex domains. Sections 1.1 and 1.2 follow [2] and [3] respectively, while Sections 2.1, 2.2 and 2.3 are based on [5], [4] and [1] respectively. This note is written for lectures in the Special Lectu...
متن کاملThe Dirichlet Problem for Complex Monge-ampère Equations and Applications
We are concerned with the Dirichlet problem for complex MongeAmpère equations and their applications in complex geometry and analysis. 2000 Mathematical Subject Classification: 35J65, 35J70, 53C21, 58J10, 58J32, 32W20, 32U05, 32U35, 32Q15.
متن کاملRegularity and Boundary Behavior of Solutions to Complex Monge–ampère Equations
1. Background 5 2. Plurisubharmonic functions 8 3. The complex Monge–Ampère operator 10 3.1. Bedford’s and Taylor’s definition of the complex Monge–Ampère operator 11 3.2. Cegrell’s definition of the complex Monge–Ampère operator 12 4. The Dirichlet problem for the complex Monge–Ampère operator 14 4.1. Boundary blow-up problems for the complex Monge–Ampère operator 17 4.2. Comparison principles...
متن کاملCheng and Yau’s Work on the Monge-ampère Equation and Affine Geometry
S. T. Yau has done extremely deep and powerful work in differential geometry and partial differential equations. His resolution of the Calabi conjecture on the existence of KählerEinstein metrics, by solving a complex Monge-Ampère equation on Kähler manifolds, is of fundamental importance in both mathematics and physics. We would like to recall in this article the contributions of S. Y. Cheng a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010